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We study the semiclassical origin of avoided crossings in nonintegrable systems with a param-
eter. At first, the trace formula for the stadium billiard is studied quantitatively through Fourier
analysis. Then, we introduce a diabatic transformation around avoided crossings and show that the
Fourier peaks after the transformation become higher for several short periodic orbits than for the
original spectral density. Further, we carry out a periodic-orbit quantization to study semiclassical

reproduction of avoided crossings.
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I. INTRODUCTION

When we study the correspondence between quantum
and classical systems, the notion of adiabatic invariance
is important. The adiabatic invariants ch p dq play

J

an important role in the Einstein-Brillouin-Keller (EBK)
quantization condition [1]. The condition works only for
systems with phase space filled by invariant tori, i.e., in-
tegrable systems. In other words, the method fails to
quantize systems with stochastic regions in phase space,
because the complicated structures of the phase space
prevent us from detecting the invariant quantities. Even
for such systems, however, it is reported that the method
called adiabatic switching can reproduce quantum eigen-
values except in the immediate vicinity of level cross-
ings [2]. Thus, it is desirable to complete the semiclassi-
cal study of avoided crossings in nonintegrable systems.
Then, the method utilizing adiabatic invariants again ac-
quires an ability to quantize nonintegrable systems.

For integrable systems, avoided crossings are consid-
ered to occur around resonances between tori. Since
there exist no classical trajectories to connect two differ-
ent tori, it is necessary to introduce imaginary trajecto-
ries, i.e., tunneling between tori. The classical resonances
cause avoided crossings also in nearly integrable systems,
but the avoided crossings are due to the transition-type
trajectories near separatrices in the stochastic region of
phase space [3].

For the strongly chaotic systems called hard chaos,
however, the same approach cannot be applied because
there exist no tori nor quantum numbers to be assigned
to each of the levels. Avoided crossings arise from strong
interaction between levels in quantum mechanics. To ob-
tain semiclassical description of avoided crossings in non-
integrable systems, we must search for classical quantities
to be responsible for the interaction.

In order to analyze the avoided crossings, we adopt
periodic orbits as a classical quantity because of the fol-
lowing reasons. First, the periodic-orbit sum plays an
important role in the trace formula [4,5]. Second, in
scarred eigenfunctions [6-8], we can find the direct ev-
idence for the effects of periodic orbits on eigenstates.
And finally, for the systems with ergodicity, there always
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exist real trajectories and periodic orbits to connect any
two regions in the phase space.

In a previous paper [9], we introduced a diabatic trans-
formation for eigenvalues in the parameter variation and
gave a conjecture that the avoided crossings are con-
tributed by long periodic orbits from the Fourier analysis
of the spectral density. The aim of this paper is to con-
firm the conjecture in the previous paper and to check
how semiclassical methods work in the parameter vari-
ation of the system. To perform such investigation, we
use a stadium billiard here [10]. We consider that the
stadium billiard is appropriate for the present analysis,
because it is one of the strongly chaotic systems with
mixing and ergodicity and easy to introduce a parameter
by changing the aspect ratio.

In Sec. I1, we obtain explicit expression of the trace for-
mula for the stadium billiard as a starting point for the
quantitative study of the correspondence between eigen-
values and periodic orbits. Correctness of the formula is
checked through Fourier analysis of the spectral density.
In Sec. III, we introduce a diabatic transformation to
avoided crossings in the parametric motion of eigenval-
ues, and we show that the height of several Fourier peaks
for relatively short periodic orbits increases by the dia-
batic transformation. In Sec. IV, we enumerate a num-
ber of periodic orbits and try to quantize using the trace
formula with the Lorentz smearing. We also check the ef-
fectiveness of the quantization procedure in reproducing
avoided crossings when we change the parameter. Fi-
nally, in Sec. V we give a discussion on our result about
avoided crossings and long periodic orbits.

II. TRACE FORMULA
FOR A STADIUM BILLIARD

Recent quantitative studies of eigenvalues for the sta-
dium billiard revealed the importance of edge contribu-
tions [11,12]. By following their methods, we obtain an
expression for the trace formula in Sec. Il A. The quan-
titative check of the formula will be done in Sec. IIB
through Fourier analysis of the spectral density [13].
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A. Trace formula

The stadium billiard system represents motion of a
particle in hard walls constructed by putting semicircles
with the radius r on both sides of a 2! x 2r rectangular
box. This is one of the examples of a strongly chaotic
system and is proven to have ergodicity and mixing [10].
Since the full stadium is symmetric with respect to the
z and y axes, there are four subspaces belonging to dif-
ferent parities. We consider the quarter stadium with
Dirichlet boundary condition on both of the outer walls
and the symmetry axes for simplicity, i.e., we consider
the antisymmetric subspace only. We introduce the ratio
A = l/r as a parameter. If we change it around A = 1,
the classical properties, such as Kolmogorov-Sinai (KS)
entropy, etc., vary gently. Therefore, this system suits
the investigation of the parameter variation within the
nonintegrable region. Hereafter, unless we mention, the
area of the billiard region in the quarter stadium is to
be normalized as 1 + /4, i.e., the same area in the case
l=r=1.

Because a particle in the system moves freely in the bil-
liard region and is reflected perfectly on the walls, we can
obtain periodic orbits by considering geometrical optics
in this region. There exists a family of neutral periodic
orbits called bouncing ball orbits which bounce perpen-
dicularly between the parallel straight sections of the bil-
liard boundary (orbit 1 in Fig. 1 and its repetition). The
other periodic orbits are isolated and unstable.

When we obtain the trace formula for the stadium
billiard, we apply the Berry-Tabor formula [14] for the
bouncing ball orbits and the Gutzwiller formula [4] for
the other unstable orbits. The important points to be
considered are the effect of the right angle corners and
the special trajectories through connecting points of the
straight boundary and the semicircles [11,12]. If we in-
clude these edge contributions as additional terms, the
semiclassical density of states ds.(k2) is represented up to
the order k~! by a sum of four terms: dp (for bouncing
orbits), d; (for isolated orbits), dg (for edge contribu-
tions), and the average density do(k2) = A/4m — L/8rk,
where A and £ are the area and the perimeter of the
billiard region, respectively.

(a)
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FIG. 1. (a) Several short periodic orbits in quarter sta-
dium; (b) trajectories due to additional edge contributions
(see text).
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1. Bouncing ball orbits

The oscillatory part of the semiclassical density of
states is mainly contributed by the bouncing ball orbits
in the semiclassical limit. A trace formula for the inte-
grable or pseudointegrable systems [14] can be applied
to the orbits. The contribution of the bouncing orbits
appears in the semiclassical density of states as the oscil-
latory term with the order k—1/2,

dp(k?) = nklg — —

1 > a e
2#\/2‘7@;\/7—5;608( 4). (1)

Here, ap is the area of the region wiped by the bouncing
orbits and lp is the length of the orbits. In the case
we consider here, i.e., the antisymmetric states, we set
ap = 2rl and lg = 2r.

2. Isolated orbits

For the infinitely many unstable orbits, we apply the
Gutzwiller trace formula,

d[(kz) - ﬁ Z i A,(Y") cos (nkl.., - nc;.ﬂr) , (2

¥ n=1

where the summations are carried out over all the primi-
tive isolated orbits v and the repetition number n of the
orbit. 1, denotes the length of the primitive orbit, o, is

the Maslov index, and A.(,") is the amplitude factor ob-
tained from the length and the stability exponent of n
times passage of the orbit 4. The amplitude factor is
represented by

A — b
2% b
A/ Itr Mz — 2|

where M, denotes the linearized Poincaré map in the
vicinity of ~.

Isolated orbits are classified into two groups by its ge-
ometrical property. The orbits retracing themselves are
called self-retracing orbits and we distinguish them from
the other non-self-retracing ones. The non-self-retracing
orbits contribute twice to the trace formula because the
motion for the positive and negative directions should
be treated independently, whereas the self-retracing ones
contribute once because the motion is not changed even
if we inverse the direction. Note that the orbits just
through right angle corners should be treated as self-
retracing in the quarter stadium (see Appendix A).

For several short orbits in parameter value A = 1, we
display their shapes in Fig. 1(a), and the values of A,(,"),
ly, and o, in Table I. The orbits 6, 6/, and 6" exist
in A > 1 only. At A = 1 where pruning for the orbits
just occurs, the additional numeric factor 1/2 or 1/4 is
needed.
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TABLE 1. Characteristic quantities for short periodic or-

bits (n = 1).
Orbit I A» oy
2 4.472 1.414 9
3 5.196 1.500 12
4 4.828 1.436 10
5 4.828 2.030 11
6 5.657 1.414x 3 13
6’ 5.657 1.414x 3 14
6" 5.657 1.414x 1 15

4

3. Edge contribution

Here we consider the extra contribution from bound-
ary edges, right angle corners, and connecting points be-
tween straight walls and semicircles. These extra terms
give contribution of the same order in k as the isolated
periodic orbits (Appendix A). The result is the sum of
the terms

dg = E;—k Z’;A,,: cos (kl.yf — U'Yzlﬂ) . (3)

The several contributed trajectories are displayed in
Fig. 1(b) and the characteristic quantities are in Table
II. The origin of the additional factor 1/2 in the orbits e
and €’ is discussed in Refs. [15,16].

Summing up all contributions to the density of states,
we obtain

due (k%) = To(F2) + nklp =

1 ap T
2w\ 27k Zn: Vvnlpg cos ( 4)

+ﬁ ZI:A., cos (kl., - a—;—ﬂ:) , (4)

where both of the unstable-orbit contributions and the
edge contributions are contained in the third term.

TABLE II. Characteristic quantities for trajectories re-
lated to edge contributions.

Orbit l..,l A..,l 2%
U 2.0 0.500 2
c 2.0 0.500 1
u 4.0 0.318 2
w+1t 4.0 0.500 2
'y 4.0 0.159 0
cc 4.0 0.159 2
c+lc 4.0 0.543 0
c+lc 4.0 0.354 1
e 4.0 1.414x1 5
e 4.0 2.000x 1 7

2
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B. Fourier transformation

Eigenvalues of the stadium billiard are obtained by
solving the Helmholtz equation (A — k2)y = 0 in the
region of the stadium with the Dirichlet boundary con-
dition [17]. It is known that the Fourier transform of the
spectral density has peaks at lengths of periodic orbits
[13]. Here, we analyze the heights of the peaks in the
transformed density of states through the trace formula
obtained in the preceding subsection and check the effec-
tiveness of the formula for the stadium billiard system.

Eigenvalues obtained by numerical computations are
only finite fractions of the whole spectrum. If we calcu-
late the Fourier transform of the spectral density from
the finite interval, the transformed density oscillates vi-
olently. To reduce the oscillation and make the density
converge, we introduce a damping factor for the Fourier
transformation.

After we multiply 8/7k A exp(ikl — A%k?), we inte-
grate them from k£ = 0 to co. For the quantum density
of states dg(k?), we obtain

/ dk 8/mkA exp(ikl — A%k?) dg(k?)

0

= 4y/TA i exp(iknl — A%k2). (5)

n=1

The Fourier transform of the semiclassical density of
states is represented by shape functions f(z) and g(x)
which are displayed in Fig. 2 (see Appendix B),

(b) T I I

8(x)

FIG. 2. The real (solid curves) and the imaginary part
(dotted curves) of the line-shape functions for Fourier peaks.
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/ dk 8+y/TkA exp(ikl — A%k?) dy.(k?) = (
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In Fig. 3, we compare the Fourier transform of the
quantum spectral density (5) (solid curves) with that of
the semiclassical density (6) (dotted curves) which is ob-
tained from the information of the classical periodic or-
bits. Figures 3(a), 3(b), and 3(c) are a comparison of
real parts, imaginary parts, and the absolute values, re-
spectively. All these figures are obtained by setting the
damping factor A = 0.035. And the first 1375 eigenval-
ues in the antisymmetric subspace for A = 1 stadium are
used to calculate the quantum curves.

In the figures, we can find excellent agreement between
the quantum and the semiclassical results. Within the
Fourier analysis of the spectral density, the trace for-
mula describes the eigenvalue properties of the stadium
billiard. This agreement guarantees the semiclassical in-
vestigation of the stadium billiard through the trace for-
mula with the periodic-orbit sum.

III. DIABATIC TRANSFORMATION

As was seen in the preceding section, the periodic-orbit
theory using the trace formula shows good agreement
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FIG. 3. Comparison of Fourier transformation of the spec-
tral density (solid curves) and the semiclassical result (dotted
curves): (a) real part; (b) imaginary part; (c) absolute value.
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with the quantum calculation. But it is not clear how the
agreement would be seen in the parameter variation of
the nonintegrable systems [18] because there exist many
avoided crossings due to the absence of the constance of
motion other than the energy.

The aim of this section is to study the role of avoided
crossings in the trace formula. Along the lines of our pre-
vious paper [9], we introduce the diabatic transformation
[19] around an avoided crossing, and consider the relation
of avoided crossings and long periodic orbits through the
Fourier analysis of the spectral density.

A. Definition

We can see the characteristics of eigenfunctions alter-
nating between two energy levels when the parameter
goes over the region of an avoided crossing [9]. Namely,
the invariant characteristics in eigenfunctions related to
classical quantities are carried along diabatic lines rather
than along adiabatic levels. Thus, we can expect that
the quantum classical correspondence is considered to
become clear when we study the system in the diabatic
representation. In order to clarify such features, we in-
troduce a two-level diabatic transformation.

The Hamiltonian around an avoided crossing is approx-
imately represented by a 2 X 2 matrix,

o= (30 B2, o

where A is constant. To decide the representation, we
introduce another condition: diagonal elements a(A) and
b(A) cross at A = Ag where the difference between up-
per and lower eigenvalues has the smallest value A =
E,(Ao) — E_(Xo). Then, we get the explicit form of the
transformation,

(‘2(;\2) bA(ﬁ) =P (E+0(/\) E_O(A)) PO, (8)

where

_ 1 (ViFS,
Pm“ﬁ(w~W)

S(A) = sgn(Ao — ,\)\/1 - (mé_ET(T)) . (10)

The new bases are also represented by a linear combina-
tion of the eigenfunctions and the features of the scar are
recovered by the transformation [9].

Since the energy diagram of chaotic systems is full of
avoided crossings, we must extend the diabatic trans-
formation for the multilevel case. Our strategy in the

—VITE
w+ﬂn)’ ®)
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FIG. 4. Diagonal elements of Hamiltonian after successive
application of the diabatic transformation (solid curves), com-
pared to the eigenvalues (dotted curves).

present calculation is to apply the two-level diabatic
transformation successively in the increasing order of the
energy gap size of the avoided crossing, where we regard a
local minima of energy differences in the parameter vari-
ation as an avoided crossing. We carry out the following
procedure repeatedly: we search for a pair of levels with
the smallest avoided crossing in diagonal elements on the
present representation of the Hamiltonian and apply the
two-level transformation (8) to the pair over a certain
parameter interval.

The energy diagram of chaotic systems contains
avoided crossings with various size. When they are trans-
formed according to the above method, we find larger
structures in the energy diagram, i.e., avoided crossings
between distant levels other than nearest neighbors. We
must decide when we should stop the procedure, because
we can always find a larger one after the transformation
of an avoided crossing in the limit Z — 0. In the present
calculation, we stopped the iteration when the smallest
gap comes up to the size of the mean level spacings. The
result for the stadium billiard is shown in Fig. 4. The
diagonal elements after the transformation (solid curve)
are compared with the eigenvalues (dotted curve).

B. Spectral density in diabatic representation

We have obtained the diabatic representation of the
Hamiltonian of the stadium billiard in Sec. IITA. The
diagonal elements in this representation are considered
as the eigenvalues in the diabatic approximation of the
original system. Here, we analyze the spectral density of
the approximate Hamiltonian through the Fourier trans-
formation and try to interpret the diabatic approxima-
tion.

Figure 5 is the plot of the Fourier transform of the
spectral density for the diagonal elements in the diabatic
representation (solid curve), which is compared with that
of the eigenvalues (dotted curve). It is apparent that
some of the peaks for diagonal elements are higher than
those for the eigenvalues.
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FIG. 5. Fourier transformation for density of diagonal ele-
ments in the diabatic representation (solid curve), compared
with that of eigenvalues (dotted curve). Both curves are cal-
culated for A = 1.0.

The peaks found in Fig. 5 are the ones corresponding
to some of the shortest periodic orbits. Since the total
amounts of the spectral weight are not changed by the di-
abatic transformation, the increase of the weight in Fig. 5
indicates the relative decrease of the weight in the region
of larger length. Thus, the diabatic approximation re-
duces the spectral weight on longer periodic orbits. In
other words, the spectral weight of longer periodic orbits
comes from the existence of avoided crossings. From this
relation, we conclude that the origin of avoided crossings
is the longer periodic orbits. This is one of the main
results in this paper.

IV. SEMICLASSICAL QUANTIZATION

So far in this paper, we have analyzed quantum en-
ergy levels and extracted classical information from them.
Conversely in this section, we construct eigenvalues of
the stadium billiard from the information of classical
periodic orbits. Moreover, we study the convergence
of Gutzwiller’s trace formula for the stadium billiard,
and check whether the semiclassical method is powerful
enough to reproduce avoided crossings.

One of the crucial problems incidental to the periodic-
orbit quantization is the exponential proliferation of pe-
riodic orbits in nonintegrable systems. This leads to the
difficulty of convergence of the trace formula. In order
to ward off the difficulty, we use the Lorentzian smearing
version of the trace formula.

A. Classical periodic orbits

Semiclassical quantization by the trace formula has
been studied in several systems. Since we can obtain
periodic orbits by geometrical consideration for billiard
systems, the enumeration is easier than for other sys-
tems. If we find a coding rule for the periodic orbits,
moreover, we can implement effective algorithms for sys-
tematic enumeration. This enables us to carry out the
periodic-orbit quantization much easier. For the stadium
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TABLE III. Number of primitive periodic orbits in a quar-
ter stadium.

Length of

Aspect ratio

code string 0.5 0.75 1.0 1.25 1.5
2 2 2 2 2 2
3 2 2 2 2 2
4 8 8 8 8 8
5 7 7 10 15 15
6 20 23 30 30 39
7 29 47 49 59 59
8 71 116 164 192 208
9 117 178 323 444 531
10 321 591 796 1108 1416
11 545 1507 2198 2893 3568
12 1336 3499 6 340 9053 10783
13 3217 8563 16 095 25030 31941
14 7760 24757 43739 69 427 93075

billiard, there exist two coding methods to my knowledge
[20,21]. In the present calculation, we use the 6-alphabet
method by Hansen [20,18].

The procedure to enumerate periodic orbits for the sta-
dium billiard is divided into two parts. At first, we enu-
merate all the code strings according to the grammati-
cal rules. It is important in this step to eliminate the
code strings breaking the rules (parameter independent
pruning [20]) and to reduce the redundancy according to
symmetry of the stadium. In the next, we obtain orbits
in the real billiard plane by performing the Newtonian
method [22]. In this step, we eliminate the orbits which
are grammatically correct but cannot satisfy the law of
reflection (parameter dependent pruning [20]).

In Table III we show the number of periodic orbits ob-
tained by this procedure. Figure 6 shows how the number
of periodic orbits increases according to the length of the
orbits. The staircaselike behavior of this figure is due to
the fact that there are accumulation points of whispering-
gallery orbits at (I + nr)n, where [ is the length of the
straight part, r is the radius of the semicircle, and n
is an integer (1,2,...). The effect of whispering orbits
on the semiclassical quantization, however, will be com-
paratively small because a high cancellation is expected
between orbits of almost the same length with different
phase factors [11].

106 T | [
code length < 10 o
[ e code length < 12 J— -
2 104 1 -—-- code length < 14 /'{: -------------------------- i
G 3
S
o -
D
2
E 102
4
100, T ! | 4J
0 10 20 30 40
Geometric Length of PO

FIG. 6. Integrated number of unstable periodic orbits.
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B. Semiclassical quantization

Using the Lorentz smeared version of the trace formula
[5,22], we carry out the periodic-orbit quantization for a
stadium billiard. The semiclassical density of states is
represented by

dec(k?;€) = medy(k2)
elr cos (2nkr — %) exp (_n%)

+
V2rk 2nr

(a)
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FIG. 7. (a) Semiclassical density of states for A = 1.0. (b)
Semiclassical density of states as the parameter A is changed.
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Here, the third term on the right-hand side denotes both
of the contributions of isolated orbits and edges.

Convergence of the right-hand side of Eq. (11) is con-
trolled by the smearing factor €. For the system whose
periodic orbits show almost random distribution, we can
estimate the optimum value of ¢ from the classical infor-
mation [22]. The distribution of periodic orbits of the
stadium billiard cannot be considered fully random as
we have seen in Sec. IV A. Thus, we could not find the
method of estimation other than choosing the value of €
by rule of thumb. The result of the semiclassical quanti-
zation for A = 1.0 and ¢ = 2.5 is displayed in Fig. 7(a).
The solid curve represents the semiclassical result calcu-
lated by Eq. (11), and arrows below the curve indicate
the exact eigenvalues.

Figure 7(b) shows the semiclassical density of states for
various aspect ratios. The horizontal axis is the aspect ra-
tio and the vertical axis is the energy. The dotted curves
imposed on the plot represent eigenvalues obtained by
the quantum mechanical calculation. As a whole, the
result of the semiclassical quantization agrees with the
quantum result and it seems that the reproduction of
avoided crossings can be achieved by the periodic-orbit
quantization (see the discussion section below).

V. SUMMARY AND DISCUSSION

In this paper, we have studied contribution of periodic
orbits in the parameter variation of nonintegrable sys-
tems through the trace formula. First, we obtained the
expression of the trace formula for the stadium billiard,
and tested the validity through Fourier analysis of the
spectral density. Next, we introduced diabatic transfor-
mation for avoided crossings in the parameter variation
to study the relation between avoided crossings and long
periodic orbits.

The strategy we used is to show that the diabatic ap-
proximation emphasizes short time motion, i.e., the in-
crease of the spectral density for short periodic orbits.
This implies the relation between avoided crossings and
long periodic orbits since the total amounts of spectral
weights do not change before and after the diabatic trans-
formation. It may be expected from physical consider-
ations that the diabatic approximation is related to the
short time phenomena in integrable and nearly integrable
systems. We showed that such a relation can be observed
in the periodic orbits even if the system is fully chaotic.
The next step of the analysis will be to search for the ex-
plicit periodic orbits related to an avoided crossing, i.e.,
we should consider the constructive method to search for
such periodic orbits corresponding to the avoided cross-
ing.

In the preceding section, we carried out the semiclas-
sical quantization and studied the semiclassical density
of states from the viewpoint of the parameter variation.
Quantum mechanics is continuous when a parameter is
varied, whereas classical mechanics is not continuous as
we can see in the pruning of classical periodic orbits. It
should also be considered how we can obtain continu-
ous quantum mechanics from the discontinuous classi-
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cal quantities. If you inspect Fig. 7(b) carefully, you
will find a discontinuity of the semiclassical density at
A = 1.0. The discontinuity is an artifact by naive semi-
classical approximations in which the pruning effect of
the orbits 6, 6', and 6” (see Table I) at A = 1.0 is not
introduced. If we include the higher-order terms of the
semiclassical expansion [23,24], we will reproduce contin-
uous quantum quantities from classical mechanics. Con-
versely speaking, however well the semiclassical density
would resemble the quantum one for a parameter value,
we cannot conclude that usual semiclassical theories are
sufficient to reproduce low-lying eigenstates. Thus, the
study of the parameter variation can be used to perform
the crucial test in the validity of the semiclassical ap-
proximation for the nonintegrable systems as well as the
semiclassical analysis of the system.
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APPENDIX A: ADDITIONAL TERMS
OF TRACE FORMULA

According to the semiclassical theory for billiard sys-
tems [12], the density of states d(k?) = }_ §(k2 — k2?) has
an expression up to the leading order of k,

) = =4 3 L 1 Q) (A

where Q(k) is an integral operator appearing in the

boundary element method, and trQN is represented by
the integral over the boundary points r(s;) [12],

. N
trQ (k)N = (:235) }{dslmdSN
N
X H [COS ®jj+1 Hfl)(klj:i“)] : (A2)
i=1

Here, ¢;j;+1 is an incident angle of the (j + 1)th reflect-
ing point, and ;41 = |r(sj+1) — r(s;)| is the distance
between the jth and (5 + 1)th points.
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1. Bouncing ball orbits and its repetition

The contribution of the first traversal of the bouncing
ball orbit is represented by the following terms:

trQ‘ = trQ| + trQ’ + trQ‘ . (A3)
B 1 1 c

l denotes a reflection on the upper straight segment, and
c represents a reflection on the half circle in the same
figure. !’ represents a trajectory reflected once from the
left edge during the reflections on the upper and lower
straight boundary.

The first term in the right-hand side (rhs) is a contri-
bution from the continuous family of the neutral periodic
orbits. This has the same expression as the Berry-Tabor
formula for the integrable systems.

- \/‘/dexpzzkr mi /4] % (1)
1 E e o]

The second term in the rhs of (A3) represents the contri-
bution from the special closed trajectory which bounces
once on the left edge (edge contribution). In this case, we
introduce a variable on the line segment s; = z. Then the
length of the trajectory is represented by I(z) = 2r+z2/r.
The critical point of the integral in k — oo is = 0,

\/>/ dx exp(2ikr +\z/k_x_2/r — w3 /4]

(A5)

tr@Q

(A4)

trQ.l
=1 exp[21,k'r — mi).

The third term is the contribution from the connecting
point between the line segment and the circle.

\/—/ exp(2ikr ——\z/k_iz/r — mi/4] « (1)

Z exp {2zkr — %] .

trQ
c

(A6)

From these calculations and Eq. (A1), the contribu-
tion from the first traversal of the bouncing ball orbits is
represented by

27l

2/ Ankr

r
+4—7;I; cos [2kr — 7] +

dg(k?®) = cos [Zk'r — g—]

cos [2kr - g] ,

(A7)

where the first term in the rhs is the Berry-Tabor term
appearing in the trace formula for integrable systems and
the other terms are the edge contribution, which should
be included in the trace formula as the additional terms.

By the same analysis, we obtain the expression for the
second traversal,

t“f" =t”| 2tA| tAl
I'Q B2 I'Q ll+ I'Q ll’+ I'Q vy

T
4k

(A8)
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The first term in the rhs represents the contribution from
a continuous family of the bouncing ball orbit. The sec-
ond and the third terms are the contribution from the left
edge, and the fourth and the fifth terms from the con-
necting point. These are calculated by stationary phase
integral and give

dp2 (kz) = 2rl cos (4kr - g)

27/ 8nkr

LA In(1+v2) 1 1 ik
ok “—4 V2n in 3 cos 4kr

(A9)

4r 1 T
+27rk *8\/5 cos (4kr - —2—) .

2. Orbits on the Dirichlet boundary

The important contribution can be found from the
lower edge as well as the left edge which is already studied
in the preceding subsection,

— ___lf___CZik(l+r)—i1r/4
e,e’ 47l'(l + 'I')
ik

trQ

(A10)

The right-hand side is represented by the sum of two
terms, the contributions from the trajectory without any
reflection on the lower edge and from one with a reflection
on the edge. If we include the multiple traversals, the
contribution to the density of states is represented by

27k Vir -2

4508 2nk(l+7) + (n — 2)7/2]
trM™ 4 2

dovor (K?) = 2(l+r) Z [cos 2nk(l + 7‘) + nw /2]

, (A11)

where trM™ = u™ + 4™, u = [21 +r+2/0(1+ r)] Jr.
The additional factor 1/2 must be introduced in the rhs.

The discussion of the symmetry origin of this factor is
given in [16].

3. Orbits through corners

The trajectories going on a right angle corner are con-
sidered in this subsection. The contribution of the orbits
to the density of states can be obtained by the same anal-
ysis as the preceding section. For example, the contribu-
tion of orbit 5 in Fig. 1(a) is represented by the following
expression:
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0 = — /_k_ exp[2(r + V72 + I2) — in/4] f(z) = % exp(izt — t2) dt
27 2(r +Vr2 +12)
3 2 z/2 2
» /wdm ox tkvr2 + 12, —e = /4 ——2\/—1_: e /4/ et dt. (B1)
— . T
-0 P r+/r? 412 °

1 )
= ———————exp [Zi(r +Vr2+12)k — 37”] ,

2(2 1 )1/ el
(A12)

where z represents the reflection point on a circle. The
density of states by this orbit is obtained as

1 2(r+Vr?2 4+ 12)
ok 2(r2 + 12)1/4

X cOs [2(7’ +Vr2 412k — 37”] .

d(k?) =
(A13)

In this case, we can obtain the Gutzwiller term for this
orbit by ttM — 2 = 4/r?2 + {2 /r and o = 11. This gives
the consistent result as the calculation above. Thus, we
have only to include the usual Gutzwiller contribution
as self-retracing orbits for the orbits through right angle
corners.

APPENDIX B: LINE-SHAPE FUNCTIONS
FOR FOURIER PEAKS

The definition of the line-shape function f(x) for iso-
lated periodic orbits [Eq. (6) in Sec. II B] is

The imaginary part has the asymptotic expression for
large |z|,

2 T

Im f(z) = N

(B2)

The line-shape function g(z) corresponding to bounc-
ing orbits is expressed by

() = ﬁ/{)w\/i exp(izt — £2) dt
—s?/a 11 2?
=e/ {‘1’ (‘Z’i’?)
izD(5/4) - (1 3 a?
T (3/4) q’(Z’E’Z)}’

where ®(a,v;2) is the confluent hypergeometric func-
tion. g(z) has the asymptotes for x — oo,

(B3)

ﬁ e:!:31ri/4 1

T(3/4) (B4
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FIG. 7. (a) Semiclassical density of states for A = 1.0. (b)
Semiclassical density of states as the parameter A is changed.



